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High Transmission Gain Inverted-F Antenna on
Low-Resistivity Si for Wireless Interconnect

Y. P. Zhang, L. H. Guo, and M. Sun

Abstract—Inverted-F antennas of 2-mm axial length are de-
signed and fabricated on a low-resistivity silicon substrate
(10 Ω · cm) using a post back-end-of-line process. For the first
time, their performances are measured up to 110 GHz for wireless
interconnects. Results show that a sharp resonance can be seen at
61 GHz for the antenna, and a high transmission gain of −46.3 dB
at 61 GHz is achieved from the pair of inverted-F antennas at
a separation of 10 mm on a standard 10 Ω · cm silicon wafer of
750-µm thickness.

Index Terms—Integrated antennas, interchip and intrachip
radios, wireless chip area networks.

I. INTRODUCTION

CMOS TECHNOLOGY continuously scales down feature
size to improve the speed of operation. At the time of

writing, the minimum feature size of MOS transistors has
reduced to 90 nm and the speed of operation has exceeded
100 GHz. Such rapid scaling has two profound impacts. First, it
enables a much higher degree of integration. Second, it implies
a much greater challenge of interconnecting because metal wire
width and space are greatly reduced and fundamental material
limits are approaching. To surpass these fundamental material
limits, a wireless interconnect has been proposed. Floyd et al.
have demonstrated wireless clock distribution at 15 GHz in
0.18-µm CMOS technology [1]. Zhang has evaluated wireless
data transmission at 15 GHz and proposed the concept of
wireless chip area networks based on ultrawideband (UWB)
radio technology [2]. These studies show that wireless inter-
connects rely on the transmission gains of integrated anten-
nas. To characterize integrated antennas, Kim et al. fabricated
dipoles of 2-mm axial length on 10 and 20 Ω · cm silicon
substrates and measured their transmission gains from 10 to
18 GHz. They found that the transmission gains of dipoles
increase with frequency and are higher on the 20 Ω · cm silicon
substrate than those on the 10 Ω · cm silicon substrate [3]. To
improve integrated antennas, Rashid et al. fabricated dipoles
of 2-mm axial length on proton-implanted silicon substrates
and measured their transmission gains from 6 to 26.5 GHz.
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They demonstrated that proton implantation greatly increased
the resistivity of silicon substrates and the transmission gains.
They confirmed that the transmission gains of dipoles increase
with frequency and found that the transmission gains could
be maximized for a given resistivity by optimizing the silicon
substrate thickness [4]. In this paper, we demonstrate high
transmission gain integrated inverted-F antennas for wireless
interconnect. Inverted-F antennas of 2-mm axial length were
fabricated on low-resistivity silicon substrates (10 Ω · cm) with
the post back-end-of-line (BEOL) process. We describe the de-
sign and fabrication of the inverted-F antenna in Section II. We
analyze and discuss the measured performance of the inverted-
F antenna up to 100 GHz in Section III. Finally, we summarize
the conclusions in Section IV.

II. DESIGN AND FABRICATION OF INVERTED-F ANTENNA

The linear inverted-F antenna consists of a horizontal ele-
ment, a short-circuited vertical element, and a signal-driven
vertical element. One advantage of the inverted-F antenna is
that its input impedance can be arranged to have an appropriate
value to match the source impedance without using any addi-
tional circuit between the antenna and the source. Another ad-
vantage of the inverted-F antenna is its performance with both
vertical and horizontal polarizations, because the antenna has
both vertical and horizontal elements. The layout and top view
photograph of the on-chip inverted-F antenna are illustrated in
Fig. 1. The test ground-signal-ground (GSG) pads are squares
of 80 × 80 µm. The width of the line elements is 10 µm. Given
the technology, the design parameters are L, H , and S. The
effective length (L + H) controls the frequency of resonance,
whereas the separation distance S can adjust the antenna im-
pedance to match the source. The pitch of our available on-
wafer test probes limits S to 100 µm. Most reported integrated
antennas for wireless interconnect have 2-mm axial length.
Hence, we chose our parameters L, S, and H as 2 mm, 100 µm,
and 100 µm, respectively. Fig. 1 also shows the tested die
view including transmit antenna 00 and receive antennas 01,
02, and 03.

One of the challenges for on-chip antennas is the large loss
due to low-resistivity silicon substrate. It becomes more serious
as the frequency increases to the millimeter-wave range. In
order to overcome this problem, a proton-implantation process
has been developed [4], [5]. It significantly increases the resis-
tivity of the silicon substrate underneath the antenna radiating
element from 10 to 105 Ω · cm. The use of a proton-implanted
silicon substrate has deviated from mainstream silicon technol-
ogy, which undoubtedly reduces the level of system integration
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Fig. 1. On-chip inverted-F antenna. (a) Top view photo. (b) Layout. (c) Tested die top view.

Fig. 2. BEOL process.

and increases the cost of the total solution. In this paper, we
employed the post-BEOL process developed at IME for RF
CMOS passives to fabricate our antennas. The BEOL process
is illustrated in Fig. 2. Note that a standard low-resistivity
silicon wafer of 750-µm thickness is used. First, a 6-µm-thick
SiO2 layer is grown on the wafer to simulate the insulator
used for on-chip interconnect in standard CMOS process, and
over it a 750-nm-thin aluminum pattern is deposited, which is
equivalent to the Al pad used in standard CMOS ICs. Then,
a 20-µm-thick SiO2 layer is grown to enhance the isolation of
the RF passives from the silicon substrate of low resistivity. The
20-µm-thick SiO2 layer and the associated deep via capability
are two important features of this BEOL process. Next, a
100-nm-thin Si3N2 layer is grown. After this process, we pro-
ceed to grow a 4-µm-thick SiO2 layer. In the 4-µm-thick SiO2

layer, the copper passive pattern is embedded. Deep vias are
formed to connect the aluminum with the copper layers. This
is followed by sequentially growing a 300-nm-thin Si3N2 layer
and a 300-nm-thin SiO2 layer for passivation. The aluminum
test pads are finally formed for testing. The inverted-F antenna
was fabricated with the simplified post-BEOL process where
no aluminum layer was deposited and no deep via was formed.
The inverted-F antenna was separated from the silicon substrate
by a 20-µm-thick SiO2 layer.

III. RESULTS AND DISCUSSION

The inverted-F antennas were measured on a wafer using a
MicroTech probe station and an HP8510XF network analyzer
to get the S-parameters in the frequency range of 10–110 GHz.

Fig. 3. S11 versus frequency.

The wafer was mounted on the metal chuck of the probe
station. Transmission gain (TG) is calculated from the
S-parameters as [1]

TG =
|S21|2

(1 − |S11|2) (1 − |S22|2) (1)

where the symbols have their usual meaning. TG is defined as
the antenna transmission gain when the receiving and transmit-
ting antennas are perfectly matched. It is valid only for the case
that S11 � 1.

Fig. 3 shows the measured S11 results of receive antennas 01,
02, and 03 in Fig. 1 located at three different dies. It is evident
that their S11 results are insensitive to their location on the
wafer. More importantly, it can be seen that a sharp resonance
dip occurs at 61 GHz, which indicates the excellent matching
of the inverted-F antenna to a 50-Ω source at this frequency. At
61 GHz, the wavelength in a CMOS silicon substrate of low
resistivity in Fig. 2 is about 2.2 mm. The feature size of our
inverted-F antenna is about 2.2 mm, which indicates that the
origin of the 61-GHz resonant frequency comes from the one-
wavelength resonance. Using a threshold of −10 dB, a broad
12.5-GHz bandwidth can be achieved at 61 GHz. It is inter-
esting to mention that exploiting the 60-GHz band for wireless
local area network applications has recently received consid-
erable attention because at which a large bandwidth of 7 GHz
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Fig. 4. Transmission gain and phase delay versus frequency.

is available [6]. As the high-frequency capabilities of CMOS
technology improve through scaling, CMOS has become a
viable technology for 60-GHz operation [7]. In addition, Fig. 3
compares the measured and simulated S11 results of the trans-
mit antenna 00 in Fig. 1. The simulation was run using a full-
wave solver IE3D. It is seen that the measured and simulated
locations of the resonance dips agree well. However, the mea-
sured and simulated S11 values do not agree well. It might be
due to fabrication tolerance.

Fig. 3 shows that the measured S11 results are lower than
−10 dB in the frequency range of 56–67 GHz, where (1) is
valid to use. Fig. 4 shows the calculated transmission gain
results in this frequency range between transmit antenna 00 and
receive antennas 01, 02, and 03 of Fig. 1. A transmission gain of
−46.3 dB at 61 GHz is achieved from the pair of inverted-
F antennas at a separation of 10 mm on a standard 10 Ω · cm
silicon substrate of 750-µm thickness. It should be mentioned
that a transmission gain of −56 dB was measured for a pair of
2-mm-long and 10-µm-wide dipoles at a separation of 10 mm
on a standard 10 Ω · cm silicon substrate of 500-µm thickness at
18 GHz [1]. This is very close to the −56.3-dB gain at 18 GHz
obtained for the same-sized dipoles at the same separation on
a standard 10 Ω · cm silicon substrate of 260-µm thickness
[4]. From Fig. 4, it is interesting to note that the transmission

gain decreases slowly with the separation distance between the
transmit and receive antennas in the far-field region at 61 GHz.
An approximate decreasing rate of 0.16 dB/mm reveals that
the propagation of guided waves plays a dominant role. Fig. 4
also shows the measured phase delay between receive antennas
01 and 02 with respect to the transmit antenna. It is observed
that the phase delay changes rapidly with frequency, which
indicates that the signal in this frequency range suffers from
the multipath fading due to the propagation of multiple guided
modes or paths.

IV. CONCLUSION

We have designed and fabricated inverted-F antennas of
2-mm axial length on a low-resistivity silicon substrate
(10 Ω · cm) using the BEOL process for wireless intercon-
nects. For the first time, we measured their performance up to
110 GHz. Results show that a sharp resonance can be seen at
61 GHz for the antenna and a high transmission gain of
−46.3 dB at 61 GHz is achieved from the pair of inverted-
F antennas at a separation of 10 mm on a standard 10 Ω · cm
silicon substrate of 750-µm thickness.
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